SNG-Mischer (LPG + Luft) und Biomethan-Anreicherungssysteme (BioCH4 + LPG)
I-MAXIMUM ist ein Hersteller von Energielösungen für Gas Für den Industriesektor. Wir sind spezialisiert auf die Herstellung und Lieferung von präzisen Gasmischungsanlagen, die den Einsatz von Kohle, Heizöl, Gas und anderen Brennstoffen in den Anlagen unserer Kunden effektiv ersetzen. Unsere Systeme tragen zur Dekarbonisierung der Industrie, Heizung, Lebensmittel und vieler anderer Sektoren bei.
Unsere Systeme können gleichzeitig bis zu vier Arten von Gasen mischen, einschließlich Biomethan, Wasserstoff, Erdgas, Flüssiggas (LPG), CO₂ und Stickstoff, um den Energiegehalt von gasförmigen Brennstoffen (Heizwert) und einen festgelegten Prozentsatz an Gas in der Mischung zu erhalten.
Wir bieten industrielle Gasmischer an, die Biomethan, Biogas, Biokraftstoffe und Erdgas anreichern, indem sie BioLPG (Propan oder Flüssiggas) dosieren.

Automatische SNG-Mixer
Luft- und Flüssiggas-Mischsystem, MGA-Serie, von I-Maximum. Das einzigartige Merkmal des MGA-Serie SNG Automatischer Mischer ist PräzisionSicherheit und Zuverlässigkeit beim Mischen, erreicht durch die Kombination von zwei VORTEX-Durchflussmesser (mit volumetrischer Messkorrektur unter Berücksichtigung der aktuellen Temperatur und des Drucks) Zwei elektrisch gesteuerte Schiebetorventile zur Regelung.

Venturi-Mischer (Propan-Luft)
Der Venturi SNG-Blender (oder LPG-Luft-Mischer) ist ein System, bei dem Flüssiggas (LPG) und Luft bei niedrigem Druck (bis zu 450 mbar) in geeigneten Verhältnissen gemischt werden, um synthetisches Erdgas (SNG) am Ausgang des Systems mit Eigenschaften ähnlich denen von Erdgas zu erzeugen. Das System minimiert die manuelle Steuerung und arbeitet bei niedrigem Druck mit einer Systemkapazität von bis zu 350 Nm³/Stunde.

Mobiler SNG-Mixer
Das Mobile SNG-Mischsystem (oder LPG-Luftmischer) ist ein System, bei dem Flüssiggas (LPG) und Luft bei niedrigem Druck (bis zu 25 mbar) und geringer Kapazität (bis zu 90 m³/h) in geeigneten Anteilen gemischt werden, um synthetisches Erdgas (SNG) am Ausgang des Systems mit Eigenschaften ähnlich denen von Erdgas zu erzeugen.

Biomethanmischer
Das PROLIMIX®-System von SCHARR TEC bereichert Biomethan, indem sein Heizwert durch die Zugabe von Propan (LPG) erhöht wird. Das PROLIMIX®-System ist standardmäßig für Biomethan-Durchflussraten von 350, 700 und 1200 Nm³/h erhältlich. Modelle sind auch mit Drücken von bis zu 35 bar erhältlich.

Mobile SNG-MIXER Behälter
Das mobile SNG-Mischsystem (oder LPG-Luftmischer) in einem Container kombiniert Flüssiggas (LPG) und Luft mit einem festgelegten Durchfluss und Druck (bis zu 12 bar) sowie einer Kapazität (bis zu 8500 m³/h) in präzisen Verhältnissen. Dieser Prozess erzeugt synthetisches Erdgas (SNG) am Ausgang des Systems, mit Eigenschaften ähnlich wie Erdgas.

Spitzenlastsystem
Spitzenlastsysteme ermöglichen eine präzise Dosierung von Gasgemischen wie SNG und angereichertem Biomethan in das Gasnetz, um genaue Anteile (z.B. 40% synthetisches SNG und 60% Erdgas) aufrechtzuerhalten.

GAS MISCHANLAGEN
Überall, jederzeit, alles
Synthetisches Erdgas (SNG) wird durch das Mischen von Luft mit Flüssiggas (LPG) hergestellt, das einen Heizwert hat, der dem von Methan (Erdgas) entspricht.
SNG-Gasmischung kann als direkte Alternative zu Erdgas in Brennern verwendet werden. ohne die Notwendigkeit einer Neukonfiguration oder des Austauschs des Brenners.



WANN VERWENDEN WIR SNG
PROPAN-LUFT?


Einstellung der Lieferung von Erdgas

Druckabfall in der Gasleitung

Anstieg des Erdgaspreises

Abnahme des Brennwerts
Wann verwenden wir SNG (Propan-Luft)?


SNG Mixers and Biomethane Enrichment Systems: Formula for a Sustainable Energy Future
The role of gas processing approaches is becoming increasingly crucial in the global energy sector, which is rapidly moving toward clean and sustainable sources of energy. With this background, gas blender systems in general, and SNG mixers together with biomethane enrichment systems in particular, take center stage as significant components for leveraging gas quality, ensuring compatibility with modern infrastructure, and easing the larger adoption of renewable energy. Further, we will review these technologies, their role, and their influence on current energy systems.
Gas Blender Systems
Gas blenders have been designed to mix various gases in accurate ratios to generate a uniform gas mixture that complies with certain quality specifications. Industrial gas mixer systems are applied in different industries that comprise chemical production, generation of electric power, and sustainable energy applications.
One of the high-priority objectives of gas mixing equipment is to produce a gas composition compatible with current pipeline facilities and fuel delivery systems. For instance, in areas where natural gas is complemented or substituted with hydrogen or biogas, a gas mixing system guarantees that the eventual mixture maintains combustion value and properties within reasonable bounds.
Up-to-date blending technologies employ cutting-edge sensors and control units to supervise such parameters as pressure, gas velocity, composition, and temperature in real-time mode. This allows for self-adjustment to mixture ratios, providing relevant gas quality even in cases when raw gas characteristics are inconstant. In many cases, a gas blender may integrate with the SCADA (Supervisory Control and Data Acquisition) system for distant diagnostics and supervision, optimizing operational efficiency and security.
SNG Mixers (LPG + Air)
SNG (Synthetic Natural Gas) is a replacement for traditional natural gas, usually generated from biomass, coal, or sustainable electricity via methanation processes. Natural gas air mixer, that is to say SNG mixer, is a complicated gas mixing system developed to blend various gas streams, including carbon dioxide and hydrogen, together with other hydrocarbons, to generate a gas mixture with specifications analogous to natural gas.
The employment of SNG mixers is increasing in importance because of their ability to decarbonize the gas-circulating system. For instance, hydrogen created from electrolysis, engaging sustainable electricity, can be blended with biogenic CO₂ in methanation reactors to produce renewable methane. This process, referred to as P2G (Power-to-Gas), is a successful approach to storing sustainable electricity and adopting it into the gas facility.
SNG blenders must be very accurate since any tiny deviation in gas characteristics can have an impact on associated equipment performance and emissions. Avant-garde SNG mixers feature sequential electronic fuel injection systems and feedback-controlled regulation to support strict tolerances. Moreover, they must be made from stuff appropriate to hydrogen, which can bring about embrittlement in some metals.
Biomethane Enrichment Systems (BioCH4 + LPG)
Biomethane is a superfine and ultra-clean form of biogas that has been processed to comply with the standards of natural gas. Feedstock biogas usually comprises 50-70% methane, with the balance containing mostly carbon dioxide and such trace pollutants as water vapor, hydrogen sulfide, and siloxanes. This biogas must be enriched before injection into the gas grid.
Biomethane enrichment system applies different technologies to get rid of impurities and optimize the methane concentration to more than 95%. Traditional techniques include PSA (Pressure Swing Adsorption), water scrubbing, chemical adsorption, and membrane separation. Each technique has its benefits when it comes to efficiency, cost, and appropriateness for various biogas compositions and flow rates.
For example, membrane separation is a commonly used technology taking into consideration its modularity and low electric power consumption. This method employs semi-permeable membranes to separate CO₂ from CH₄ based on diffusivity and molecular size. At the same time, the PSA method engages the selective adsorption of CO₂ and other pollutants onto adsorbent materials under high pressure, thus releasing refined methane during the phase of desorption.
After the biomethane is enriched, it can be mixed with natural gas employing gas blender technology or injected right into the pipeline. In addition, it can be liquefied to produce Bio-LNG or compressed to make Bio-CNG. Both of them may supplement and be alternative options to fossil fuels in the shipping sector.
Integration and Applications
The integration of the above-mentioned systems and technologies is significant for the creation of reliable and renewable energy infrastructures. In sustainable energy hubs, such technologies are combined together to maintain and deliver gas streams that align with regulatory standards and consumer requirements.
For instance, a biogas factory equipped with a biomethane enrichment system can supply sustainable methane into a gas distribution network. In case the methane content differs slightly or requires to be adjusted for combustion value, a gas mixing system performs precise corrections. Relatedly, in Power-to-Gas facilities, hydrogen received from excess wind or solar energy is transformed to SNG employing blenders and methanation reactors, supporting the balance of the electrical grid and storing power in a sound and transportable form.
Together with environmental advantages, these technologies offer economic benefits. They give opportunities for energy producers to make a profit from waste materials, decrease greenhouse gas emissions, and take part in the sustainable gas market.
Bottom Line
SNG mixers and biomethane enrichment technologies are crucial elements when it comes to the transition to a clean and resilient energy system. Nowadays, when countries look for ways to conform to climate security requirements and decarbonize their gas facilities, these technologies offer reliable solutions. Incessant investments and innovations in this field will be the linchpin that helps to achieve long-term sustainability in the worldwide energy sector.